

Specifications

Monitored Voltage:	$\begin{aligned} & \text { 100-120V, } 200-240 \mathrm{~V}, \\ & 380-415 \mathrm{~V}, 440-460 \mathrm{~V} \text {, } \\ & 480 \mathrm{VAC} 40-70 \mathrm{~Hz} \\ & \text { (Fuse } 0,5 \mathrm{~A} \text {) } \end{aligned}$
Optional Separate Auxiliary Voltage AC:	$\begin{aligned} & 100-120 \mathrm{~V}, 200-240 \mathrm{~V}, \\ & 380-415 \mathrm{~V}, 440-460 \mathrm{~V} \text {, } \\ & 480 \mathrm{VAC} 40-70 \mathrm{~Hz} \\ & \text { (Fuse } 0,5 \mathrm{~A} \text {) } \end{aligned}$
Optional Separate	24-60VDC (Fuse 0,5A)
Auxiliary Voltage DC:	110-220VDC (Fuse 1A)
Supply tolerance:	+10\%, -20\%
Power rating:	5 VA
Current Input:	1A CT or 5A CT, <0,1VA
Contact rating:	AC: 100VA -250V/2A max. DC: 50W -100V/1A max.
Adjustments:	Depending on the selected model (see page 2)
Output kVAr range:	Any \% of the scale
Analogue output 1: (see page 3 for available outputs)	mA: Up to $20 \mathrm{~mA}, \max 500 \mathrm{R}$ V: Up to $10 \mathrm{~V}, \min 100 \mathrm{kohm}$ (other on request)
Analogue output 2: (see page 3 for available outputs)	mA : Up to $20 \mathrm{~mA}, \max 500 \mathrm{R}$ V: Up to 10 V , min 500 ohm (other on request)
Accuracy:	Class 0,5
Temperature:	-20 to $+70^{\circ} \mathrm{C}$
Humidity, relative:	0-95\%
Weight:	0.6kgs
Front protection:	IP21
Flammability:	UL94-V0

The unit meets EN 60255-27 Cat. III, Pollution degree 2 and the relevant environmental and EMC tests specified in EN 60255-26 to comply with the requirements of the major Classification Societies.

Related information:
The KCVA19x series are also available for panel mounting as KPVA19x series.

- Precision 2-Step Reactive Power Overload Protection, not affected by heavily distorted waveforms
- Total processing time less than 50 mS
- 3 or 4 -wire systems. Definite time trip delays
- Triple relay operation gives more flexibility
- Up to two individual very fast analogue output signals (<50mS), (optional)
- Wide range setting of high overload contact hysteresis
- DIN96 Slave Indicator with status LEDs (optional)

Description

The digital controlled KCVA19x range provides precision (1.0\%) 2-step reactive power overload protection and monitoring of three phase generators or motors.

Available for 3-phase 3-wire (2R3) and 4-wire (3R4) systems.
The unit measures the voltage and current true r.m.s. value, and accuracy is independent of any wave form distortion.

The standard models takes the auxiliary supply voltage from the monitored voltage (terminal $1 \& 2$).
It can also be delivered with optional separate AC or DC auxiliary voltage (terminal 26 \& 27), but that must be specified when ordering (see page 3 for ordering code for separate Aux. Supply).

User settable trip levels and delays. Colour of LEDs indicate alarm status. Alarm LEDs flash during count-down.

LED status		
Power	Level 1	Level 2
σ	\emptyset	\emptyset
Normal	Alarm	Alarm

Start of monitoring function is delayed when power is switched on (default 2 secs delay). In this way false tripping during power up is avoided.

The DIN-rail mounted instrument reads the power level directly in kVAr. The optional slave watt-meter and the triple-zone status LEDs at a glance gives the clear safety message:

```
-LEVEL2
-LEVEL1
-NORMAL
```


OUTPUTS

Up to two individual very fast analogue output signals (optional) proportional to kW range (see page 2 for models with outputs). If output is used for remote meter reading, we recommend $0-1 \mathrm{~mA}$ for the slave indicator.

RELAY OUTPUTS

Relay operation depends on the selected model (see page 2). Other combinations are available on request.

Description

KCVA191x

Both overload relays can be used for non－essential load release or as an alarm indication．

A wide range overload contact hysteresis can be set to enable R2 to be used for a non－essential load to be reconnected or as a standby generator stop signal．Relay R3 is an additional relay that can be used for local indication，as an input to an alarm system etc．

A trip LED flashes when the trip level is passed，the relay trips when the delay has elapsed．The timer resets ifthe fault is removed during countdown．

Relay Operation The relay operation is delayed in the arrow direction，the reset is instantaneous．Both trip levels can，independently，individually set over the scale range（ $0-100 \%$ FSD）．

Configuration：3－Phase，3－Wire（2R3）

Models Latch Output 1 Output 2 KCVA191 KCVA191E

Adjustments
Adjustments \quad Trip level Overload Level 2： $0-100 \%$ of FSD Hysteresis L．1：$\quad 2-50 \%$ of FSD KCVA191GFB Hysteresis L．2：$\quad 2-50 \%$ of FSD

Relays shown de－energised．R2 is fail－safe and energises when unit is powered

KCVA194x

Both overload relays can be used for non－essential load release or as an alarm indication．

A wide range overload contact hysteresis can be set to enable R2 to be used for a non－essential load to be reconnected or as a standby generator stop signal．Relay R3 is an additional relay that can be used for local indication，as an input to an alarm system etc．

A trip LED flashes when the trip level is passed，the relay trips when the delay has elapsed．The timer resets if the fault is removed during countdown．

Configuration：3－Phase，4－Wire（3R4）

Relay	O／L Level 1	OLL Level 2	N／A	Fail Safe	Latch	Fixed Hysteresis	Adjustable Hysteresis	N／A	N／A
R1	X				X		X		
R2		X		X	X		X		
R 3	X	X			X				

$\frac{\text { Models }}{\text { KCVA194E }} \frac{\text { Latch }}{-} \xrightarrow{\text { Output } 1} \underset{-}{\text { Output } 2}$
KCVA194G KCVA194FA KCVA194GFA X KCVA194FB KCVA194GFB

Adjustments Trip level Overload level 1： $0-100 \%$ of FSD Delay Overload Level 2： $0-100 \%$ of FSD $0-30$ secs Hysteresis L．1：2－50\％of FSD Hysteresis L．2：$\quad 2-50 \%$ of FSD
Relays shown de－energised．R2 is fail－safe and energises when unit is powered

KCVA191x2

Both overload relays can be used for non－essential load release or as an alarm indication．

A wide range overload contact hysteresis can be set to enable R2 to be used for a non－essential load to be reconnected or as a standby generator stop signal．Relay R3 is an additional relay that can be used for local indication，as an input to an alarm system etc．

A trip LED flashes when the trip level is passed，the relay trips when the delay has elapsed．The timer resets if the fault is removed during countdown．

Configuration：3－Phase，3－Wire（2R3）

Relay	O／L Level 1	O／L Level 2	N／A	Fail Safe	Latch	Fixed Hysteresis	Adjustable Hysteresis	N／A	N／A
R1	X				X				
R2		X					X		
R3	X	X							

KCVA191GFA2
KCVA191FB2
KCVA191FB2
KCVA191GFB2 \bar{x}

Adjustments Trip level
Overload leve 1．Diplevel Delay Overload level 2． $0-100 \%$ of FSD 0 －3secs Hysteresis 1．1：NA
Hysteresis $\mathrm{L} .2: \quad 2-50 \%$ of FSD
Relays shown de－energised．

Configuration：3－Phase，4－Wire（3R4）

Relay	0／L Level 1	O／L Level 2	N／A	Fail Safe	Latch	Fixed Hysteresis	Adjustable Hysteresis	N／A	N／A
R1	X				X				
R2		X					X		
R3	X	X							

$\frac{\text { Models }}{\text { KCVA194E2 }}$ Latch Output 1 Output 2
KCVA194E2
KCVA194G2
KCVA194FA2
KCVA194GFA2 \bar{X}
KCVA194GFA2
KCVA194GFB2 \bar{x}

-	-
-	-
X	-
X	-
x	x
x	x

Adjustments Trip level
Overload Level 2： $0-100 \%$ of FSD
Hysteresis L．1：N／A
Hysteresis L．2：$\quad 2-50 \%$ of FSD
Relays shown de－energised

A trip LED flashes when the trip level is passed，the relay trips when the delay has elapsed．The timer resets if the fault is removed during countdown．

Depending on application，select the model that matches the electrical installation． If none of the listed models fit your purpose please contact Megacon for customer adaptation．

Connection Diagram

Connection Diagram with optional slave instrument

NB! To ensure correct kVAr measurement, the voltage phase sequence and CT connections must be as shown on connection diagrams.

Analogue Output

The output signals are proportional to the meter reading (see page 2 for an overview of models and functions).

The signal is specifically intended as an input to a control system for monitoring or control.

Add suffix from table below to type designation to specify output required:

Outputs 1

O/P1	$\mathbf{0 - 1 0 m A}$	O/P11	$\mathbf{0 - 1 0 m A}$
O/P2	$\mathbf{0 - 2 0 m A}$	O/P12	$\mathbf{0 - 2 0 m A}$
O/P3	$\mathbf{4 - 2 0 m A}$	O/P13	$\mathbf{4 - 2 0 m A}$
O/P4	N/A	O/P14	N/A
O/P5	N/A	O/P15	N/A
O/P6	N/A	O/P16	N/A
O/P7	N/A	O/P17	N/A
O/P8	$\mathbf{0 - 1 0 V}$	O/P18	$\mathbf{0 - 1 0 V}$
O/P9	$\mathbf{0 , 2 - 1 0 V}$	O/P19	$\mathbf{0 , 2 - 1 0 V}$
O/P10	$\mathbf{4 , 3 - 2 0 m A}$	O/P20	$\mathbf{4 , 3 - 2 0 m A}$

Relay Contacts
Burden on supply
Switching voltage (Max)
Switching voltage (Rated)
Max I continuous
Max breaking capacity
Dielectric strength across
Open contacts

Connection
Terminal type
Wire max.

Screw Torque
Overload
Voltage

Current
: 170mW per relay : 400V AC, 300V DC
: 250V AC, 30V DC
: 6A RMS, 6A DC
: 1500VAAC, 18-120W DC
: 1000V RMS
: Terminal Clamp and Screw : T1-T4,
T26-T27: AWG 24-14,
T5-T10: AWG 12,
other terminals: AWG 24-12
: 0.5 Nm
: 1.2 x Un continuous
$2 \times$ Un for 10secs
$2.5 \mathrm{x} \ln$ continuous
$5 x \ln$ for 1 secs (max 25A)

Dimensions

The MEGACON policy is one of continuous improvement, consequently

 equipment supplied may vary in detail from this publication.